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An efficient synthesis of 2,2,3,3,11,11,12,12-octamethyl-1,4,7,10,13-pentaoxacyclohexadecane (1,
OM16C5) is described, which affords over an order of magnitude improvement in yield over the previ-
ously reported method. The first X-ray crystal structure of 1, as a complex with NaSCN, is also reported.
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There is much interest in sodium-selective ionophores1,2 for
their use in electrodes1,3 and optodes.4 One such ionophore is
2,2,3,3,11,11,12,12-octamethyl-1,4,7,10,13-pentaoxacyclohexade-
cane (1, octamethyl-16-crown-5 or OM16C5), which was first pre-
pared in 1996 by Suzuki and co-workers.1 The synthetic procedure
as reported and shown in Scheme 1 involved three steps starting
from pinacol. The first two steps proceeded in excellent (95%)
and good (ca. 81%) yields, respectively. However, the cyclization
step, involving the addition of diethylene glycol dimesylate to
2,3,3,9,9,10-hexamethyl-4,8-dioxa-2,10-undecanediol (2) using
NaH in THF, proceeded poorly with a low (3.7%) isolated yield,
making the overall yield approximately 2.8% for the three steps
starting from pinacol. We were interested in this crown ether for
alkali-metal extraction studies, and sought to improve the yield
so that larger (potentially gram) quantities of material could be
readily prepared. We report here a modified procedure that boosts
the conversion of 2 to 1 over 15-fold in an overall yield of 59% in
three steps. We also report for the first time a crystal structure of
1, as the NaSCN complex.

The low yield for the conversion of 2 to 1 can be attributed to
the inherent difficulty in alkylation of the tertiary alkoxide 2. Elim-
ination is favored over substitution due to its high basicity and low
nucleophilicity.5 However, allylation or benzylation of tertiary alk-
oxides can be effected in higher yield because allyl and benzyl ha-
lides do not undergo b-elimination. Accordingly, to improve the
ll rights reserved.
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sen).
synthetic yield of 1, we decided to employ a strategy similar to that
utilized for the preparation of octamethyl-18-crown-6,6 based
upon allylation of the tertiary alkoxide and subsequent conversion
of the allyl ether groups to glycol ether groups by ozonolysis. Ring
closure of the resultant diol could then be accomplished using
methodologies as described by Okahara et al.7

The procedure utilized to convert 2 into 1 is shown in Scheme 2.
Reaction of 2 in dry THF with excess NaH for 1 h at room temper-
ature, followed by addition of excess allyl bromide, and by
refluxing, can yield the bis-allyl ether 5,5,6,6,12,12,13,13-octa-
methyl-4,7,11,14-tetraoxa-1,16-heptadecanediene (3) in nearly
quantitative conversion. To achieve high conversion, the reaction
was monitored by TLC or GC, and additional NaH and allyl bromide
were added as necessary to drive the reaction to completion. In a
typical reaction,8,9 3 was obtained from 2 in 98% yield as a low
melting solid in sufficient purity (P95% by GC) to be used in the
subsequent step without further purification.

Conversion of the diallyl ether 3 to 4,4,5,5,11,11,12,12-octa-
methyl-3,6,10,13-tetraoxa-1,15-pentadecanediol (4) was accom-
plished by ozonolysis. In a typical reaction,10 ozone was bubbled
into a solution of 3 in 1:3 dichloromethane–methanol at �78 �C
until the blue color persisted for ca. 15 min. Displacement of the
excess ozone with argon, followed by warming to 0 �C and treat-
ment with NaBH4 overnight resulted in pure 4 in 88% yield (after
workup and purification on a short silica column).

Finally, ring closure was accomplished by treating a solution of
diol 4 in dry dioxane with dry powdered NaOH at 70 �C for 3 h,
followed by the slow addition of 1 equiv of tosyl chloride, and
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Scheme 2. Three-step procedure used to convert diol 2 into OM16C5 (1).
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Scheme 1. Procedure used to prepare 1 as reported by Suzuki et al.

Figure 1. X-ray crystal structure of the NaSCN complex of OM16C5.
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heating the mixture at 70 �C for an additional 3 days. Following
workup and two chromatographic purifications, 0.78 g of crown
1 was obtained in 68% isolated yield as a pale yellow oil.11

A single crystal of the sodium thiocyanate complex of 1 was ob-
tained from acetone–ethyl acetate, and the structure was deter-
mined by X-ray crystallography.12 Figure 1 depicts the first
reported crystal structure of OM16C5. The Na+ is complexed by
the crown ether, and it sits at a distance of 0.576 Å from the mean
plane defined by the five oxygen atoms. The O���Na distances range
between 2.382 and 2.458 Å. The SCN anion also coordinates the
Na+ through its N atom, with an observed N���Na distance of
2.343 Å.

In conclusion, we have demonstrated that OM16C5 can be pre-
pared from diol 2 in three steps with a combined yield of 59%,
which represents a substantial improvement over the previously
reported method. Accordingly crown 1 can now be prepared in five
steps from pinacol, in combined yields potentially approaching
45%, which permits gram quantities of this highly sodium-selec-
tive1 crown to be prepared for investigation.
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